
Design Patterns and Test Driven Development

Jörg Faschingbauer

www.faschingbauer.co.at

jf@faschingbauer.co.at

1 / 138



Table of Contents

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

2 / 138



Introduction

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

3 / 138



Introduction Literature

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

4 / 138



Introduction Literature

The Book on Patterns: Gang of Four (GoF)

Groundbreaking in 1995,
until today

Collection of
then-existing patterns

... only giving them
names

Concise and to the point

Well-structured

(Relatively) easy to read

... provided you
understand the
problems

5 / 138



Introduction Literature

The Other Books on Patterns

6 / 138



Introduction Literature

The Book on Test Driven Development

Groundbreaking in 2003

Revolutionary though
simple (has only 200
pages)

“New” methodologies

Test-first development
Refactoring, guided
by automatic tests
...

Basis for all agile
software development
processes

7 / 138



Introduction Design Patterns

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

8 / 138



Introduction Design Patterns

Design Patterns: What?

What is a design pattern?

A solution to a design problem

Beware: there is no solution without a problem

“Design” means Object Oriented Design

Inheritance and polymorphism aren’t patterns — at least not in OO

There are many different problems

Object creation: objects are not always created directly
Structure: who knows who, and what does he look like?
Behavior : how do my objects talk to each other?

9 / 138



Introduction Design Patterns

Design Patterns: Why?

Why use design patterns?

Code is a solution to a problem

Solution/code needs to be readable and understandable
Solutions to similar problems tend to be similar
... at least, should!

Design patterns ...

Give names to solutions → important in communication
Encourage solution similarity
Are well understood → documentation need only give the pattern’s
name
Solutions become obvious

10 / 138



Introduction Design Patterns

Non-Obvious Problem

Gsellmann’s Weltmaschine

11 / 138



Introduction Design Patterns

Non-Obvious Solution

12 / 138



Introduction Design Patterns

Design Patterns: Caveats

Design patterns are no silver bullet

Overengineering : artificial/unnecessary code complexity

Solution without a problem
Not easy to understand — not at all obvious what’s being solved
One of the biggest mistakes in software design
It’s like the pest

Pattern usage does not automatically ensure sound OO design

What is sound design?

Nobody knows

... but fortunately there is Test Driven Development

13 / 138



Introduction Test Driven Development

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

14 / 138



Introduction Test Driven Development

Test Driven Development

A simple idea ... but first the problem ...

New code is written and tested since ages

Bugs are fixed until it works
Testing mainly done manually
Standalone test programs, or ...
... mostly the entire target application

Existing code breaks once it is modified (law of nature)

Breakage not easily detected
Fear!
=⇒ nobody ever modifies existing code
=⇒ software starts to rot once it has been written

15 / 138



Introduction Test Driven Development

Development — Traditional Approach

Traditional Approach

Think about the design

Come up with a decision

Code it

See if it works

Fix

(etc.)

16 / 138



Introduction Test Driven Development

Traditional Approach — Problems

So what are the core problems?

Before a modification ...

How do I know my solution will be ok?
How will it feel? Will it be usable?
Am I (and others) comfortable with it?

After a modification ...

It is impossible to decide if everything still works
What is the definition of everything?
What is the definition of works?
What are the costs to decide that?
What are the costs if we do only manual testing?
What is the state of the code? What about refactoring?

After the release ...

We curse at the testers that they do a bad job!

17 / 138



Introduction Test Driven Development

Test Driven Development — Principles (1)

What if we were able to test everything automatically?

Modifications could be done without any fear

“Regression”: new term for that kind of bug
Something that worked before a modification but doesn’t afterwards

Ongoing refactoring possible → no code smells

New features would bring new tests

The Everything grows over time

But: the Everything is now defined as ...

Production code

Test code

18 / 138



Introduction Test Driven Development

Test Driven Development — Principles (2)

Test Driven Development

New “development process”

Tests come first

→ “Requirements phase”

Have you ever read a requirements
document after coding was done?

→ Tests fail initially

19 / 138



Introduction Test Driven Development

Test Driven Development — Benefits? Caveats?

What does it bring, what does it cost?

More work initially — so much for sure

Investment into the future

More code can be done

Not at all easy to convince people of it

Big caveat

Tests belong to the code

No way moving on without!

=⇒ Have to take care of the tests

20 / 138



Test Driven Development

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

21 / 138



Test Driven Development xUnit — How it Works

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

22 / 138



Test Driven Development xUnit — How it Works

Origins

Unittest frameworks — where they come from

SUnit, 1998. By Kent Beck in Smalltalk.

JUnit, 2001. Ported from Smalltalk to Java, by Kent Beck and Erich
Gamma.

Gained wide popularity by Kent Beck’s book

From then on ported to almost every language — commonly known
as xUnit

Python: PyUnit, then became part of the Python library, module
unittest

C++: Boost.Test, CppUnit, Google Test, ...
All the newer languages: Ruby, Rust, Go, ...
COBOL

23 / 138



Test Driven Development xUnit — How it Works

xUnit Structure — Overview

TestCase: one test that is written. Here’s the most code.

TestSuite: composition of many test cases, for structural purposes.

Fixture: defined environment of a TestCase

TestRunner: runs a Test (Suite or Case), collects and presents
results.

24 / 138



Test Driven Development xUnit — How it Works

xUnit: TestCase and TestSuite

Suites: recursive test structure

Derive from TestCase to implement tests

Use TestSuite objects to structure tests hierarchically

Run a subset of all tests

The Composite Pattern in use ...

Not available in every xUnit incarnation

25 / 138



Test Driven Development xUnit — How it Works

xUnit: TestCase and Fixture

Fixture: defined test environment

Multiple tests start from the same state → common Fixture

Method setUp() — establishes known state to start tests from.
Examples: well-known/required database content, files have to be
present, ...

Method tearDown() — deallocates resources. For example: cleanup
database, remove files, ...

Implementation:

Python: class that
contains test methods

C/C++: weird macros
to setup objects and
associations

26 / 138



Test Driven Development xUnit — How it Works

xUnit: TestCase and Assertions

Test code checks for failure: Assertions

Varying multitude of assertions to draw from

Records test failure in some test result, for later reporting

Abort the test case → failure

Variation: non-fatal assertions

container.insert(100)

container.insert(200)

self.assertEqual(len(container), 2)

self.assertAlmostEqual(1/3, 0.333, 2)

27 / 138



Test Driven Development xUnit — How it Works

xUnit: TestRunner

Running all tests: TestRunner

TestRunner usually instantiated in main programs

During running a test ...

Fixtures are prepared (setup(), tearDown())
Results are collected
Failure or success

After all tests have run ...

The result has to be presented

(Sidenote: do you know the Strategy Pattern?)

28 / 138



Test Driven Development Test Driven Development

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

29 / 138



Test Driven Development Test Driven Development

The “Process”

Test Driven Development is ... well ...

Not a full process

The basis of all “agile” processes

Anybody doing Scrum these days?

It’s Software done right

It’s about continuous investment and
taking out

30 / 138



Test Driven Development Test Driven Development

The “Requirements Phase”, New Code

Writing new code in a test driven way ...

Nothing is clear from the beginning

... not even the problem

To get hold of the problem ...

Write code that wouldn’t compile
(there’s no solution yet)

... but gives you an impression of how a
solution could look like

Talk to people about proposed solution

→ “Finding the interface”

This is the first test

“Test First Development”

31 / 138



Test Driven Development Test Driven Development

The “Requirements Phase”, Existing Code

Modifying existing code, to add features or change behavior ...

Find the test suite for the module in question

→ structure is important

Add a new test for the new feature, making clear exactly what is
wanted

The new test naturally fails, as always

Modify code

Run all tests

Repeat

32 / 138



Test Driven Development Test Driven Development

Caveats (1)

Take care of your tests! If your tests are suddenly gone, your code is
alone ...

33 / 138



Test Driven Development Test Driven Development

Caveats (2)

Tests are what ensure your code’s value

You can do more valuable code with tests and TDD

Test code is no different from “real” code

→ Subject to bitrot

“Lost Tests Syndrome”: keep your hands off manual test suite
arrangement

→ Varying support from frameworks

34 / 138



Test Driven Development Test Driven Development

Caveats (3)

But:

Nobody tests the tests

false impression: “it’s only tests”

Structure is important

Easy running is important — everybody has to know how

Easy running : avoid big dependencies — nobody will want to setup
database infrastructure

35 / 138



OO Basics

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

36 / 138



OO Basics

Object Oriented Programming and Design (1)

“Perfection is attained not when there is nothing more to add, but when
there is nothing more to remove”

Antoine de Saint-Exupéry

To adhere to this principle is possible even in assembly code

... it’s just that it’s a bit harder

37 / 138



OO Basics

Object Oriented Programming and Design (2)

What OO does for us:

Things can be programmed like we talk about them

Enforces encapsulation

Members (private)
Methods

Lets us separate out dependencies

Interfaces
Inheritance

38 / 138



OO Basics Members and Methods

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

39 / 138



OO Basics Members and Methods

Example: Members and Methods

Encoding and decoding: the Julius Caesar “Encryption” method

UML C++ Code

class JuliusCaesarCodec

{

public:

string encode(string data);

string decode(string data);

private:

int shift;

};

40 / 138



OO Basics Members and Methods

Example: Constructor and Destructor

Constructor (and Destructor): controlled initialization

There’s only one way to do it — unlike in C

struct initialization

Explicit assignment

Define a function init jc codec(int shift)

(literally hundreds more)

C++ Code

class JuliusCaesarCodec

{

public:

JuliusCaesarCodec(int shift);

~JuliusCaesarCodec();

// ...

};

41 / 138



OO Basics Inheritance

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

42 / 138



OO Basics Inheritance

Motivation: Interfaces

What if ...

There were multiple such codecs available (Base64?)

I don’t care which one I am using

I want to write code that just makes use of any codec

Solution: Interfaces

Define the interface of an entire set of implementations

Implementations implement interfaces

User code is then written against interfaces rather than concrete
implementations

43 / 138



OO Basics Inheritance

Example: Interfaces (1)

Interfaces ...

Don’t implement anything

Only force implementors into a corset for uniform usage

UML

44 / 138



OO Basics Inheritance

Example: Interfaces (2)

Interfaces don’t implement ...

C++: no dedicated interface keyword (as there is in Java)

Abstract Methods

Codec Interface: C++ Code

class Codec

{

public:

virtual ~Codec() {}

virtual string encode(string data) = 0;

virtual string decode(string data) = 0;

};

45 / 138



OO Basics Inheritance

Example: Interfaces (3)

Concrete code implements ...

C++: no dedicated implements keyword (as there is in Java)

Plain inheritance

Implementing an Interface: C++ Code

class JuliusCaesarCodec : public Codec

{

public:

// ...

virtual string encode(string data);

virtual string decode(string data);

};

46 / 138



OO Principles — SOLID

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

47 / 138



OO Principles — SOLID

Design Principles

Principle vs. Dogma

Every handcraft has rules, on every single level, which everybody
agrees upon

Our handcraft is no exception

On the design level : Design Principles

Single Responsibility
Open/Closed
Liskov Substitution
Interface Segregation
Dependency Inversion

→ SOLID (for people who find it hard to remember rules)

Antipattern: a pattern that violates any of these principles

48 / 138



OO Principles — SOLID Single Responsibility

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

49 / 138



OO Principles — SOLID Single Responsibility

Single Responsibility Principle

“Every class must have responsibility over a single part of the program”

Robert C. Martin, at around 2000

“Every class must do one thing and should do that well.”

Jörg Faschingbauer, all the time

Consequences:

Defining/writing tests is easier

Documenting is easier

Understanding is easier

50 / 138



OO Principles — SOLID Open/Closed

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

51 / 138



OO Principles — SOLID Open/Closed

Open/Closed Principle

“Software entities must be open for extension, but closed for
modification.”

Bertrand Meyer, 1988

Interpretations/consequences:

Adding functionality not by modifying but by adding (e.g. “plugins”)

Heavy use of an interface

52 / 138



OO Principles — SOLID Liskov Substitution

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

53 / 138



OO Principles — SOLID Liskov Substitution

Liskov Substitution Principle (1)

“It must be possible in a program to exchange two implementations of an
interface without compromising the correctness of the program.”

Barbara Liskov, 1995

Is this true for our Codec “design”?

54 / 138



OO Principles — SOLID Liskov Substitution

Liskov Substitution Principle (2)

Classical violation of Liskow’s principle: square/rectangle

A rectangle is defined as a pair (width, height), each of which is
modifiable separately

Can a square be seen as a rectangle then?

Consequences:

No special cases in user code

Polished interfaces

55 / 138



OO Principles — SOLID Interface Segregation

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

56 / 138



OO Principles — SOLID Interface Segregation

Interface Segregation Principle

“No client of an interface should be forced to depend on methods it does
not use.”

Robert C. Martin (again), at around 2000

57 / 138



OO Principles — SOLID Dependency Inversion

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

58 / 138



OO Principles — SOLID Dependency Inversion

Dependency Inversion Principle (1)

1 High-level modules should not depend on low-level modules. Both
should depend on abstractions.

2 Abstractions should not depend upon details. Details should depend
upon abstractions.

Robert C. Martin (again), at around 2000

59 / 138



OO Principles — SOLID Dependency Inversion

Dependency Inversion Principle (2)

Bad Good

Does that really pay off?

There is only one concrete implementation

With dependency inversion applied there’s one more class

Not easily readable

60 / 138



OO Principles — SOLID Dependency Inversion

Dependency Inversion Principle (3)

Really Bad

Typical scenario: long
if-else-if-... chains

Each association used
based on, say, the value
of an integer variable

Really Good

Shorter code — no long
chains

(Ideally) does exactly
one thing, and delegates
encoding

Does anybody know the Strategy Pattern?

61 / 138



Design Patterns

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

62 / 138



Design Patterns

Design Patterns — The Legend

“Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that

problem, in such a way that you can use this solution a million times over,
without ever doing it the same way twice.”

Christopher Alexander, 1977

Christopher Alexander is an architect

Gang of Four got heavily inspired by his work

63 / 138



Design Patterns

Design Patterns — Definition

A Design Pattern has the following attributes:

Name. We use it to identify and talk about problems and their
solutions.

Problem. A pattern is a solution, and there is no solution without a
problem. The problem must be clearly defined.

Solution. A description of the solution — design, responsibilities,
collaborations, ...

Consequences. Benefits, trade-offs. Needed for evaluation/selection.

64 / 138



Design Patterns

Design Patterns — The Book

Creational Patterns

Factory Method

Abstract Factory

Builder

Prototype

Singleton

Structural Patterns

Adapter

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

Behavioral Patterns

Interpreter

Template
Method

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor
65 / 138



Creational Patterns

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

66 / 138



Creational Patterns

Creational Patterns — What for? (1)

Direct object creation ...

Using concrete type

void use_codec(JuliusCaesarCodec *codec) { /*...*/ }

JuliusCaesarCodec *codec = new JuliusCaesarCodec(5);

use_codec(codec);

Hard dependency on JuliusCaesarCodec, introduced by
1 codec being of concrete type
2 Instantiation of concrete type

Is it necessary to use concrete type?

Does use codec() care?

67 / 138



Creational Patterns

Creational Patterns — What for? (2)

Using interface type

void use_codec(Codec *codec) { /*...*/ }

Codec *codec = new JuliusCaesarCodec(5);

use_codec(codec);

Still hard dependency on JuliusCaesarCodec, introduced by
1 Instantiation of concrete type

68 / 138



Creational Patterns

Creational Patterns — What for? (3)

Naive solution: external function

Codec *create_codec();

void use_codec(Codec *codec) { /*...*/ }

Codec *codec = create_codec();

use_codec(codec);

Dependency has been moved to create codec()

We don’t care which Codec incarnation we use → Liskow
Substitution Principle

Decided externally, by the implementation of create codec()

69 / 138



Creational Patterns

Creational Patterns — What for? (4)

Now how could create codec() look like?

enum CodecType {

JULIUS_CAESAR,

BASE64

};

int jc_shift = 5;

// modify if you want different type

CodecType type_instantiated = BASE64;

Codec *create_codec() {

switch (type_instantiated) {

case JULIUS_CAESAR: return new JuliusCaesarCodec(jc_shift);

case BASE64: return new Base64Codec;

}

}

70 / 138



Creational Patterns

Creational Patterns — What for? (5)

There are prettier solutions!
→ Creational Patterns

71 / 138



Creational Patterns Abstract Factory

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

72 / 138



Creational Patterns Abstract Factory

Abstract Factory

Setup (near main() function?)

codec_factory = new JuliusCaesarCodecFactory(5);

Usage

Codec *codec = codec_factory->create();

use_codec(codec);

73 / 138



Creational Patterns Abstract Factory

Abstract Factory — Discussion

How does using (instantiating) code get to the factory?

Pass factory in

Explicit: everyone can see that module makes use of it
→ Dependency is obvious

Global Variable → bad smell

Hidden dependency

Singleton ...

Pass via Constructor

class SomeCodecUser

{

public:

SomeCodecUser(CodecFactory *codec_factory);

};

74 / 138



Creational Patterns Singleton

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

75 / 138



Creational Patterns Singleton

Singleton

Ensure a class has only one instance,
and provide a global access point to it.

get instance() is not called
on an instance

C++, Java: static

76 / 138



Creational Patterns Singleton

Singleton — Example

Example: Base64Codec ...

Everybody needs it

Email attachments
HTTP transport
...

There need not be multiple instances

It has no data of its own
Only the algorithm (encode(), decode())

77 / 138



Creational Patterns Singleton

Singleton — Example, Class Definition (1)

base64.h

class Base64Codec

{

public:

// return (and on-demand instantiate)

// the only Base64Codec object in the world

static Base64Codec &get_instance();

string encode(string data);

string decode(string data);

private:

...

};

78 / 138



Creational Patterns Singleton

Singleton — Example, Class Definition (2)

base64.h

class Base64Codec

{

public:

...

private:

// THE object

static Base64Codec *instance;

// inhibit public instantiation

Base64Codec();

};

79 / 138



Creational Patterns Singleton

Singleton — Example, Class Implementation

base64.cc

Base64Codec *Base64Codec::instance;

Base64Codec &Base64Codec::get_instance()

{

if (instance == NULL)

instance = new Base64Codec;

return *instance;

}

80 / 138



Creational Patterns Singleton

Singleton — Example, User Code

user.cc

string binary_data = ...;

string email_attachment =

Base64Codec::get_instance().encode(binary_data);

81 / 138



Creational Patterns Singleton

Singleton — Discussion

Singleton: Pros

Nicely encapsulates global data

Saves one from passing parameters instead

Singleton: Cons

Nicely encapsulates global data

Saves one from passing parameters instead

It’s still global

Unit testing?

Makes the design less obvious

Singleton access hidden deep in implementation
Hidden dependency!

Anti-Pattern?

82 / 138



Structural Patterns

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

83 / 138



Structural Patterns

Structural Patterns — What for?

Any non-trivial program has an object structure ...

Multiple objects are combined → structure

Some structures and motivations are immediately obvious

... others aren’t

There are no billions of different motivations

→ A handful of Patterns is sufficient to describe most

84 / 138



Structural Patterns

Combining Objects — Multiple Inheritance (1)

Issues:

CombinedClass is a union of both of its bases

Contains boths methods and data, without “namespace” qualification

Conflicts
Ambiguities
Prone to bugs

Situation very similar to global variable usage

85 / 138



Structural Patterns

Combining Objects — Multiple Inheritance (2)

Massacre in C++

class CombinedClass : public SomeClass, public AnotherClass

{

public:

void combinedOperation() {

attr = SomeClass::attr + AnotherClass::attr;

operationA();

SomeClass::operationB();

AnotherClass::operationB();

operationC();

}

private:

int attr;

};

86 / 138



Structural Patterns

Combining Objects — Composition (1)

Better, because ...

Relationships are more obvious

No ambiguities

Speech is clear: “Uses SomeClass and AnotherClass to
implement its operations” (if anybody cares at all)

And not: “Is both a SomeClass and a AnotherClass, and adds a
little to both”

87 / 138



Structural Patterns

Combining Objects — Composition (2)

class CombinedClass

{

public:

void combinedOperation() {

attr = Some.attr + another.attr;

some.operationA();

some.operationB();

another.operationB();

another.operationC();

}

private:

SomeClass some;

AnotherClass another;

int attr;

};

88 / 138



Structural Patterns

Combining Objects — There’s More To It

So much for trivial object combinations
→ Structural Patterns

89 / 138



Structural Patterns Adapter

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

90 / 138



Structural Patterns Adapter

Adapter — Sample Problem

Sample Problem: Base64Codec (again) ...

I have an implementation based on C++ iostream

Want to implement C++ string based interface

... as dictated by interface Codec

class Base64Codec

: public Codec

{

public:

string encode(string);

string decode(string);

};

class IOBase64Codec

{

public:

static void encode(

istream&, ostream&);

static void decode(

istream&, ostream&);

};

91 / 138



Structural Patterns Adapter

Adapter — Motivation

Pattern: apply ultralight glue ...

Interfaces are similar

It is obvious that their intention is the same

Interfaces are incompatible, compiler-wise

Adapt the iostream implementation into our string based Codec

hierarchy

Fortunately there’s C++’s istringstream and ostringstream

which turns a string into a stream and back

92 / 138



Structural Patterns Adapter

Adapter — Graphics

93 / 138



Structural Patterns Adapter

Adapter — Implementation

A typical adapter implementation ...

Usually very short, to the point, obvious

Inlineable in most cases

No big deal — it’s the name that is important for communication

string Base64Codec::encode(string in)

{

istringstream sin(in);

ostringstream sout;

IOBase64Codec::encode(sin, sout);

return sout.str();

}

94 / 138



Structural Patterns Bridge

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

95 / 138



Structural Patterns Bridge

Bridge — Example: String (1)

Straightforward bridge example: String

Goal: transparent sharing of objects

User code has an innocent looking object → bridge

Handle to the real stuff
... possibly augmented with some additional higher level methods

E.g. a naive String class

Implementation: reference counting, low level memory management
Bridge: cute methods find, cut, splice, ...

96 / 138



Structural Patterns Bridge

Bridge — Example: String (2)

String: Object Diagram

String: Class Diagram

97 / 138



Structural Patterns Bridge

Bridge — Definition

Bridge: GoF Definition

Decouple an abstraction from its implementation so that the two can vary
independently.

So what could that mean?

String is an easy application of the Bridge pattern

String is an abstraction: nobody sees low level memory issues, but
rather useful methods

Definition leaves much more room for interpretation

Abstraction side can vary
Implementation side can vary

98 / 138



Structural Patterns Bridge

Bridge — General Case

Focus is more on independent evolution of both sides

Abstract Factory can be used to setup bridges

As for the String example ...

Abstractions: ASCIIString, UTF8String, ...

Implementations: StringImpMalloc, StringImpChunked

99 / 138



Structural Patterns Composite

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

100 / 138



Structural Patterns Composite

Composite — Example: Unix Filesystem (1)

101 / 138



Structural Patterns Composite

Composite — Example: Unix Filesystem (2)

Hierarchy is in place with this design

But there is more which is lacking from this example

Directory is different
Application (tar, tree, ...) needs to know the concrete types
→ Complexity

102 / 138



Structural Patterns Composite

Composite — Example: Graphics

Common interface

Composite Graphic draws all it contains

Recursive: Graphic can contain Graphic can contain ...

103 / 138



Structural Patterns Composite

Composite — Example: Thermometer

AveragingThermometer: average out of several temperatures

Design variation: weighted average

104 / 138



Structural Patterns Composite

Composite — Example: Boolean Expression

Abstract Syntax
Trees (AST)

Simple AST:
Boolean
Expression

Evaluating
(executing) ASTs
is a different
story

Interpreter
Pattern

Object Structure

Class Diagram

105 / 138



Structural Patterns Proxy

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

106 / 138



Structural Patterns Proxy

Proxy — Definition

GoF Definition

Provide a surrogate or placeholder for another object to control access to
it.

GoF Diagram

A-ha ...

107 / 138



Structural Patterns Proxy

Proxy — GoF Example: Image in Text

Image should not be
loaded/calculated when
not in visible area

→ Demand loading

ImageProxy::draw()

{

if (image == NULL)

image = Image(filename);

image->draw();

}

108 / 138



Structural Patterns Proxy

Proxy — Example: Plugin Interface

Loading code from a file ...

Unix/Linux: dlopen(), dlsym()

Windows: LoadLibraryEx(), GetProcAddress()

Defining a plugin scheme: Codec ...

A plugin (DLL, sharded library) brings one Codec object

Well defined name: the object

We only know the interface (implementation buried in plugin)

Proxy Codec ...

Load library
Use dlsym() to find the object

Use that as RealSubject

109 / 138



Structural Patterns Proxy

Proxy — Remoting (1)

The word Proxy as everybody knows it ...

110 / 138



Structural Patterns Proxy

Proxy — Remoting (2)

Distributed applications ...

Use a remote object as if it were remote

Local Proxy object — satisfying the interface

Remote concrete implementation

Wire protocol in between

DBusThermometer

111 / 138



Structural Patterns Proxy

Proxy — Remoting (3)

Distributed Application

112 / 138



Behavioral Patterns

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

113 / 138



Behavioral Patterns

Behavioral Patterns

Structure versus Functionality

Structure implies functionality (sometimes)

Composite: boolean expressions

Structure implies only little functionality (sometimes)

Adapter
Bridge

Functionality implies structure (mostly)

Behavioral Patterns:

Focus on object interactions

Parameters, return values

→ Semantics

114 / 138



Behavioral Patterns Command

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

115 / 138



Behavioral Patterns Command

Command

Command: the problem ...

Imagine a large framework, passing and executing requests of some
sort

Requests are not fixed, but rather extensible/anonymous

Request ⇐⇒ function
call

Variable parameters

→ Encapsulate
parameters in object

116 / 138



Behavioral Patterns Command

Command — Example: Remote Requests

Large framework, handling remote requests ...

Which pattern is used for RequestParser?

Command’s execution maximally decoupled from the rest

→ Highly dynamic

117 / 138



Behavioral Patterns Command

Command — Problems

Command has problems (as everything) ...

Non-uniform return value — Hello, Spool, JobStatus are quite
different

How is that serialized back onto the line?
→ Probably not appropriate!

Command classes are largely unrelated (→ structural problems)

Many Command classes

Command implementation tend to become complex

Gets unhandy really soon if applied unapproprately → watch out, and
change!

118 / 138



Behavioral Patterns Command

Command — Example: Shell

UNIX Shell: parsing and executing user’s command line ...

Uniform outcome (exit status) → perfect!

GoF example: menu items (no outcome at all)

119 / 138



Behavioral Patterns Interpreter

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

120 / 138



Behavioral Patterns Interpreter

Interpreter — Example: Boolean Expression (1)

Composite structure

Evaluation is not so simple

Storage of variable’s values → Context

121 / 138



Behavioral Patterns Interpreter

Interpreter — Example: Boolean Expression (2)

Interpreter vs. Composite: hard to tell the difference ...

Languages are best
represented by trees

Trees are best
represented using
Composite

=⇒ Interpreter likely is
Composite

Not necessarily vice versa

class Context {

public:

bool lookup_value(string);

};

class Expression

{

public:

virtual bool

evaluate(Context&) = 0;

};

122 / 138



Behavioral Patterns Interpreter

Interpreter — Discussion

Ups

Grammar is easy to extend

Easily implemented

Downs

Complex grammars hard to maintain

→ Parser generators probably a better alternative

See also

Visitor pattern, to extend functionality

123 / 138



Behavioral Patterns Observer

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

124 / 138



Behavioral Patterns Observer

Observer — Model-View-Controller (MVC) (1)

Model-View-Controller: revolution in GUI design in the late 70s

Model : application data, business logic

View : visible representation

observes the model → callback

Controller : specifies actions to
manipulate the model

Triggered by button clicks, for example

125 / 138



Behavioral Patterns Observer

Observer — Model-View-Controller (MVC) (2)

MVC is not among the GoF patterns ...

Subdivided into more generalized patterns

MVC was discovered for GUI design
Integrated into Smalltalk
Adopted by Apple for their GUIs

Controller → Strategy

“Do something!”, and not caring what

View → Composite

Recursive decomposition of graphics

Interaction (notification) between Model and View → Observer

126 / 138



Behavioral Patterns Observer

Observer — Collaborations (1)

Subject has zero or
more Observers
registered

On modification, all of
them are notified

On notifications, they
update their ... whatever

127 / 138



Behavioral Patterns Observer

Observer — Collaborations (2)

128 / 138



Behavioral Patterns Observer

Observer — Discussion (1)

Observing multiple subjects

update() needs to pass a reference to changed subject

When is the update triggered?

Every single modification?
→ Inconsistent state
“Transactional integrity”?

Who triggers the update?

User after he is done? → unhandy
Subject? Transactional integrity?
→ Be careful during design! Change if smell detected!

129 / 138



Behavioral Patterns Observer

Observer — Discussion (2)

Push versus pull

Does subject push modification information?
Or does observer query for it?

Multithreading

pull has to lock into subject
→ Deadlock danger during callback (?)

130 / 138



Behavioral Patterns Strategy

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

131 / 138



Behavioral Patterns Strategy

Strategy — Example: TestRunner (1)

The Template Method pattern, as applied to xUnit ...

Template Method doesn’t scale (as everybody knows)

It is a straightforward solution to long if-else chains
One dimension of variability (here, format()) is manageable)
Number of implementors grows exponentially with the number of
variations
Extension is not reusable

Different solution necessary

132 / 138



Behavioral Patterns Strategy

Strategy — Example: TestRunner (2)

Consequences ...

TestRunner instances are parameterizeable

TestRunner is a concrete class
Receives a Formatter during construction (or at runtime, or ...)

Formatting is Unit-testable without prior test run

133 / 138



Behavioral Patterns Strategy

Strategy — Final Words

Strategy is one of the most important patterns, because ...

Delegation is perfectly/clearly/cleanly expressed

Runtime parameterization possible

Delegee need not be passed to constructor — can also be done
dynamically

Perfect alternative to most long if-else chains where functionality
is chosen

134 / 138



Behavioral Patterns Visitor

Overview

1 Introduction
Literature
Design Patterns
Test Driven
Development

2 Test Driven Development
xUnit — How it Works

Test Driven
Development

3 OO Basics
Members and Methods
Inheritance

4 OO Principles — SOLID
Single Responsibility
Open/Closed
Liskov Substitution

Interface Segregation
Dependency Inversion

5 Design Patterns
6 Creational Patterns

Abstract Factory
Singleton

7 Structural Patterns
Adapter
Bridge

Composite
Proxy

8 Behavioral Patterns
Command
Interpreter
Observer
Strategy
Visitor

135 / 138



Behavioral Patterns Visitor

Visitor — Extending Boolean Expressions (1)

Main method:
evaluate()

What about
prettyprint()?

What about
myfavoritemethod()?

Add all to Expression?

→ Unhandiness,
uncovered by the
Interface Segregation
Principle

136 / 138



Behavioral Patterns Visitor

Visitor — Extending Boolean Expressions (2)

Add visit() to
Expression

Nodes: enter(), walk
children, leave()

Leaves: enter(),
leave()

... or so

137 / 138



Behavioral Patterns Visitor

Notes

138 / 138


	Introduction
	Literature
	Design Patterns
	Test Driven Development

	Test Driven Development
	xUnit — How it Works
	Test Driven Development

	OO Basics
	Members and Methods
	Inheritance

	OO Principles — SOLID
	Single Responsibility
	Open/Closed
	Liskov Substitution
	Interface Segregation
	Dependency Inversion

	Design Patterns
	Creational Patterns
	Abstract Factory
	Singleton

	Structural Patterns
	Adapter
	Bridge
	Composite
	Proxy

	Behavioral Patterns
	Command
	Interpreter
	Observer
	Strategy
	Visitor


